Acta Cryst. (1966). 21, 200

The Crystal Structure of Neptunite*

BY E. CANNILLO, F. MAZZI AND G. ROSSI

Centro di Cristallografia del C.N.R., sez.VI, Istituto di Mineralogia dell'Università di Pavia, Italy

(Received 16 November 1965)

When this work was begun the following chemical and crystallographic data of neptunite were available: formula KNa₃Fe₂Ti₂(Si₄O₁₂)₂; lattice parameters: $a=16\cdot46$, $b=12\cdot50$, $c=10\cdot01$ Å, $\beta=115^{\circ}26'$, space group C2/c, Z=4. A new chemical analysis showed the presence of some lithium that had been determined as sodium in previous analyses. On this basis the crystal structure analysis was carried out by the use of three-dimensional Patterson and Fourier syntheses, direct methods and least-squares refinement of atomic parameters (final $R=0\cdot117$). The structure is based upon a new three-dimensional network of SiO₄ tetrahedra. When the structure determination was nearly accomplished a piezoelectric effect was detected. A crystal structure with space group Cc is postulated which is fairly similar to the centrosymmetrical one and could explain the piezoelectricity. Chemical and crystallographic considerations suggest the following formula for neptunite: LiNa₂K(Fe,Mg,Mn)₂(TiO)₂[Si₈O₂₂].

Introduction

Neptunite was first found at Julianehaab (Greenland) by Flink (1895) who studied it from an optical and morphological point of view. He pointed out also a kind of morphological relationship between neptunite and titanite (sphene). Subsequently neptunite was found at San Benito (California) and studied by Ford (1909); Bradley (1909) and Louderback (1910) gave chemical analyses of Californian neptunite. In 1926 Fersman studied and analysed a manganese-rich (MnO 9.95%) neptunite from the Kola Peninsula. At the same time Gössner (1925) noticed a crystallographic analogy between neptunite and aegirine. Gössner & Mussgnug (1928) first reported the cell parameters of neptunite from San Benito. Nockolds (1950) re-examined the optical properties of neptunite and Heinrich & Quon (1963) found the mineral at Seal Lake, Labrador, and summarized the properties, particularly the optical ones, of neptunites studied up to that time. Further values of the cell data were given by Berry (1963) together with X-ray powder data.

Strunz (1957) considers neptunite as a silicate with rings of four SiO₄ tetrahedra while Belov (1963), on the basis of theoretical considerations, suggests that a particular kind of chain of tetrahedra, extended around a pseudo fourfold screw axis, is present.

The present study was started with the following data:chemicalformula:KNa₂Ti₃(Fe,Mg,Mn)₂(Si₄O₁₂)₂; cell parameters: a=16.46, b=12.50, c=10.01 Å (all ± 0.01), $\beta=115^{\circ}26'$; space group C2/c, Z=4.

Experimental

The X-ray diffraction data were collected from a singlecrystal fragment of neptunite from San Benito which was made nearly cylindrical; the radius of this cylindrical sample was 0.011 cm and the c axis was parallel to the axis of the cylinder. Multiple film Weissenberg photographs of the integrated reflexions *hkl* (*l* from 0 to 5) were taken with Cu K α radiation and precession pictures of the reflexions *h0l* were recorded with Mo K α radiation. The intensities were measured with a Nonius microdensitometer. The corrections applied to the intensities were concerned with absorption, incipient but incomplete $\alpha_1 - \alpha_2$ spot doubling (Sakurai, 1962) and Lorentz-polarization. The linear absorption coefficient of neptunite is $\mu = 281$ cm⁻¹ for Cu K α and the transmission factors varied from 0.12 to 0.91. A secondary extinction correction was applied during the refinement (see below).

Structure analysis

Patterson projections along [010] and [001] were first calculated. While the latter projection did not yield any immediate information, the former [Fig. 1(*a*)] showed nearly all the maxima aligned on directions parallel to [100] at *w* ranges of $\frac{1}{6}$ (*i.e.* at w=0, $\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{2}$). On the basis of this observation, four Patterson sections normal to [001] at the *w* levels given above were calculated. In addition, in order to record the Patterson maxima with a different *w*, [001] Patterson projected slabs $\frac{1}{6}$ *c* thick, with the middle part at the same levels, were computed. The two kinds of Patterson syntheses did not appear appreciably different.

A rough computation showed that the heights of the Patterson peaks defining distances between equivalent points were too low to be useful, even for the Fe-Fe distances, so that the high maxima actually present in the Patterson sections must be related to distances between non-equivalent atoms occurring many times. This prevents the determination of the crystal structure considering Fe and Ti as heavy atoms.

According to the assumed space group C2/c, an arrangement of Patterson maxima with w coordinates like those observed could be obtained only if the z

^{*} Paper presented at the XXI Congress of the Società Mineralogica Italiana, Pisa, Italy, October 1964. Cannillo, Mazzi & Rossi (1965).

coordinates of most of the atoms were: (a) $0, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}$, $\frac{2}{3}, \frac{5}{6}$ or $(b) \frac{1}{12}, \frac{1}{4}, \frac{5}{12}, \frac{7}{12}, \frac{3}{4}, \frac{11}{12}$. From the four Patterson sections [Fig. 1(b)] one can remark that while on the sections at w=0 and $\frac{1}{3}$ the highest maxima are at v=0, $v=\frac{1}{4}$ and $v=\frac{1}{2}$, on the section at $w=\frac{1}{6}$ and $w=\frac{1}{2}$ the most relevant ones are at $v=\frac{1}{8}$, $v=\frac{5}{8}$ etc. The coordinates of the equivalent points suggest that an arrangement like that mentioned above is consistent with the z coordinates of type (b), while with coordinates of type (a) the positions of the maxima on the Patterson sections at $w = \frac{1}{6}$ and $w = \frac{1}{3}$ must be interchanged. On the Patterson sections at w=0 and $w=\frac{1}{6}$ two large maxima are present, namely: A (u=0.133, v=0) and B (u=0.050, v=0.117). This pair offers a clue for the resolution of the structure because it gives rise to vectors with a modulus of about 2 Å. Such vectors could be referred only to (Fe,Ti)-O distances; moreover the maxima are arranged in such a way that they correspond to the six vectorial distances of a nearly perfect octahedron. The further consideration that the A and B maxima are fairly high, although they are due to distances from oxygen atoms, leads to the conclusion that all the (Fe,Ti)–O octahedra have the same orientation in the unit cell.

The strongest Patterson peak (C) occurs at $u=\frac{1}{4}$, $v=\frac{1}{4}$, w=0 and it is clearly due to a vectorial distance repeated many times: if all the octahedra have the same orientation this peak may represent distances between homologous atoms of the octahedra, particularly between the (Fe,Ti) cations. If also the high peaks D (u=0.166, v=0.117) and E (u=0.416, v=0.416) are thought to be due to distances between the same atoms, two kinds of chains of octahedra may be found consistent with the coordinates of the equivalent points in the chosen space group and with the considerations made on the Patterson sections. One of the two following sets of approximate parameters could therefore be assigned to (Fe,Ti):

Fig. 1. (a) Patterson projection normal to [010]. (b) Patterson sections normal to [010]. Contours are drawn at equal but arbitrary levels.

	x/a	y/b	z/c
(a) (Fe,Ti)(1)	0.208	0.187	0.083
(Fe,Ti)(2)	0.458	0.437	0.083
(b) $(Fe,Ti)(1)$	0.333	0.310	0.083
(Fe,Ti)(2)	0.083	0.062	0.083

Some more Patterson peaks remained, apparently not due to (Fe,Ti)-(Fe,Ti) and (Fe,Ti)-O distances, namely the F and G maxima on the section at w=0and the L and H maxima on the synthesis at $w=\frac{1}{6}$. These peaks are consistent with the supposition of pairs of silicon atoms lying on lines parallel to [110] and [$\overline{1}10$] at opposite sides of the chains of the (Fe,Ti)-O octahedra. In such a way, bearing in mind the alternative pairs of coordinates of (Fe,Ti), two sets of equivalent points could be assigned to silicon atoms, the approximate parameters of which are, for model (a):

	x/a	y/b	z/c	
Si(1)	0.375	0.062	0.083	
Si(2)	0.042	0.312	0.083	
Si(3)	0.625	0.312	0.083	
Si(4)	0.292	0.562	0.083	
and for model (b):			
Si(1)	0.166	0.437	0.083	
Si(2)	0.500	0.187	0.083	
Si(3)	0.250	-0.062	0.083	
Si(4)	-0.083	0.187	0.083	

Both models can be derived from a close-packed arrangement of the oxygen atoms. Taking the atomic diameter of oxygen to be a little more than 3 Å, the cell dimensions allow the distribution of the oxygen atoms on a nearly tetragonal body centered lattice whose unit cell has the following dimensions: a' = 3.02Å (normal to the (001) plane), b' = 3.13 Å (parallel to **b**), c' = 4.12 Å (parallel to **a**). If some series of octahedra and tetrahedra are built up with oxygen atoms in a way consistent with Patterson syntheses, model (a) is obtained by putting some oxygen atoms on the twofold axes, and model (b) results from putting no oxygen atoms on them. In both cases the condition was fulfilled that each SiO₄ tetrahedron shared only a corner with other polyhedra (SiO₄ tetrahedra, (Fe,Ti)O₆ octahedra). The two structural models are rather similar as far as the linking of SiO₄ tetrahedra in directions nearly parallel to [110] and [$\overline{1}$ 10] is concerned, but are different in the linking of such polyhedra along [001]. The same consideration is true for the linking of (Fe,Ti)O₆ octahedra. From this point of view both models seem to be possible and the real structural arrangement cannot be decided.

At this stage of the work an attempt was made to settle the question by means of direct methods. The 131 strongest reflexions were examined and the determination of the signs of the corresponding structure factors was tried by the application of Sayre's (1952) relation:

$$S_{hkl} = S_{h'k'l'}, S_{h+h'}, k_{+k'}, l_{+l'}$$

Owing to the rather high value of the unitary structure factor of these reflexions, there was a very high probability of a correct identification of their phases. Using the Woolfson (1961) method, a coherent set of signs was given to 98 reflexions (among which were those with h=2n, l=2n); for the remaining ones, two alternative self-consistent sets of signs were possible. Electron density projections permitted the rejection of one of these sets of signs because it disagreed with the above models; the other gave a result in full agreement with model (b) of the structure.

All previous considerations made and some electron density syntheses permitted the identification of the positions of the oxygens, of the potassium atoms (on fourfold series of equivalent points) and of two-thirds of the sodium atoms (on an eightfold series of equipoints). The positions of the remaining sodium atoms were not detected, but they obviously could be only on a fourfold series of equivalent points. The electron density syntheses showed a low peak on a twofold axis, but sodium could not be put in that position because it would have been surrounded by six oxygen atoms at distances of little more than 2 Å. However there was no place, besides the one above mentioned, where it was possible to put an atom.

Then the possibility that the chemical formula might be incorrect was considered. Actually all the chemical analyses of neptunite give a total percentage of oxides greater than 100, and three of them in a rather significant way (Table 1). Besides this the chemical formula

	1	2	3	4	5	6
SiO ₂	51.53	51.93	52.87	53.44	52.68	52.29
TiO ₂	18.13	17.45	17.83	17.18	18.21	17.35
FeO	10.91	10.23	11.69	11.23	5.16	11.92
MnO	4.97	5.32	0.85	1.78	9.95	2.27
MgO	0.49		1.44	1.82	0.12	1.55
CaO	_	0.71	1.56	0.25	0.43	0.62
K ₂ O	4.88	5.71	5.08	5.39	4.94	5.58
Na ₂ O	9.26	9.63	9.56	9.14	9.16	6.81
Li ₂ Õ	—			_		1.63
Total	100.17	100.98	100.88	100.23	100.65	100.02

Table 1. Chemical analyses of neptunite*

* 1. Julianehaab (Flink, 1895), 2. Julianehaab (Sjöström, 1895), 3. San Benito (Bradley, 1909), 4. San Benito (Louderback, 1910), 5. Kola (Fersman, 1926), 6. San Benito (this paper).

computed from each analysis gives a figure for the number of sodium atoms less than 3 (ranging from 2.67 to 2.85) against a constant number of 1 for potassium. This sodium defect could be partially or totally balanced by the presence of a little calcium replacing some sodium. However, these considerations and the results of the structural analysis led to the opinion that all the discrepancies would disappear if some lithium were present. This lithium could have been considered as sodium in the chemical analyses because sodium was determined as the difference between the total chlorides and the potassium chloride. A new chemical analysis of neptunite was carried out and lithium chloride was separated by treating the chlorides with alcohol-ether, in which only the lithium chloride is soluble. The result is given in Table 1.

The refinement was carried out by means of some cycles of least-squares (full matrix, isotropic temperature factor for each atomic species, equal weight for all reflexions). The structure factors were calculated by using the atomic scattering factors obtained from Moore's constants (1963) and considering iron and titanium as replaceable cations. All the calculations were carried out with an ELEA 6001 digital computer. A plot of ln I_c/I_o against I_c for the most intense reflexions showed a conspicuous secondary extinction effect. A linear relation between ln I_c/I_o and I_c was assumed and a least-squares secondary extinction coefficient derived. This was applied to all the F_o 's by means of the formula:

$$(F_o)$$
 corr = (F_o) ext. exp $(\frac{1}{2}\varepsilon I_c)$ where $\varepsilon = 1.76 \times 10^{-6}$.

The refinement lowered the discrepancy index from 0.40 to 0.117 for the observed reflexions and 0.155 for all the reflexions (giving to the unobserved ones a value half of the least observed intensity).

The atomic parameters and their standard deviations (Cruickshank, 1949) are given in Table 2. The isotropic thermal parameters are: $B_{\rm Fe,Ti} = 1.52$, $B_{\rm Na} = 2.06$, $B_{\rm K} = 1.72$, $B_{\rm Li} = 4.47$, $B_{\rm Si} = 0.80$, $B_{\rm O} = 1.44$ Å². The observed and calculated structure factors are compared in Table 3.

At this stage of the work, when the determination of the crystal structure seemed accomplished in the space group C2/c, the opportunity was offered to subject neptunite to a test for piezoelectricity, which gave a positive effect. It seemed rather improbable that a completely wrong structure could give such good agreement with experimental data, so an attempt was made to see whether it was possible to obtain, from the centric model, an acentric structure so as to justify the rather strong piezoelectric effect. In the next section, after the description of the 'centrosymmetrical' structure, a suggestion will be made as to what might be the real structural model.

Description of the structure

The basic structure of neptunite is a three-dimensional network of SiO₄ tetrahedra. This network is different from that of framework silicates because each tetrahedron shares only two or three oxygen atoms with its neighbours. This arrangement is built up (Fig.2) by two series of chains of tetrahedra extended roughly along [110] and [110]; these chains, sharing some oxygen atoms, give rise to other chains along [001]. The network can be imagined as the repetitition by translation of a 'cage' built up from two rings of 18 SiO₄ tetrahedra and four rings of 14 SiO₄ tetrahedra. The 'cage' represents a stoichiometric unit corresponding to $[Si_{16}O_{44}]^{24-}$ (Fig. 3). Actually there are two identical systems of 'cages'; they are interlaced and tied together by the (Fe, Ti) O_6 octahedra that are connected in such a way as to determine a further network which has dimensions comparable to those of the 'cages' of tetrahedra. Each octahedron shares two edges with its two

 Table 2. Atomic coordinates and their standard deviations (standard deviations of fractional coordinates in parentheses)

	x/a	y/b	z/c	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
(Fe.Ti)(1)	0.3402(1)	0.3211(2)	0.0983 (4)	0·002 Å	0.003 Å	0·004 Å
(Fe.Ti)(2)	0.0883(1)	0.0561(2)	0.1128 (4)	0.002	0.003	0.004
Na	0.2640 (4)	0.1983 (6)	0·3094 (11)	0.007	0.007	0.011
K	0.0000	0.4204 (3)	0.2500		0.004	
Li	0.5000	0.4353 (18)	0.2500		0.023	
Si(1)	0.1452 (2)	0.4060 (3)	0.0566 (7)	0.003	0.004	0.007
Si(2)	0.5233(2)	0.2280(3)	0.0855 (7)	0.003	0.004	0.007
Si(3)	0.7698 (2)	0.4741(3)	0.1083 (7)	0.003	0.004	0.007
Si(4)	0.8942(2)	0.1491 (3)	0.0816 (8)	0.003	0.004	0.008
O(1)	0.9538 (5)	0.0446 (10)	0.0688 (18)	0.008	0.012	0.018
O(2)	0.4549 (5)	0.3253 (7)	0.0666 (16)	0.008	0.009	0.016
O(3)	0.1099 (13)	0.1673 (9)	0.2664 (18)	0.021	0.011	0.018
O(4)	0.3723.(6)	0.4387 (10)	0.2348 (16)	0.010	0.012	0.016
O(5)	0.2050 (6)	0.0796 (10)	0.0888 (19)	0.010	0.012	0.019
O(6)	0.7122 (11)	0.3677 (12)	0.0427 (19)	0.018	0.012	0.019
O(7)	0.2088 (6)	0.3077 (10)	0.0707 (16)	0.010	0.012	0.016
O(8)	0.8339 (5)	0.4919 (9)	0.0239 (19)	0.008	0.011	0.019
O(9)	0.1592 (4)	0.4505 (7)	0.2143 (15)	0.007	0.009	0.012
O(10)	0.3975 (6)	0.2104 (7)	0.2541 (15)	0.010	0.009	0.012
O(11)	0.4613 (7)	0.1173 (7)	0.0239 (19)	0.011	0.009	0.019
O(12)	0.9291 (5)	0.2562 (8)	0.0316 (14)	0.008	0.010	0.014

Table 3. Structure factors of neptunite

Reflexions marked * were unobservably weak; in these cases F_{obs} are derived from 0.5 $I_{obs min}$.

k	1 10F 10Fc	k 1 10F 10F c	k 1 10F ₀	10F _c k 1 10	FoloFc k	1 10F 10F	k 1 10F 10F c	k 1 10F 10F	k 1 10F	10Fc k 1 10F	0 10F k 1	LOF _o 10F _c
k 0022222244444466666888888888000000000022222224444466666888888880000000000	 100° 010° 02 2 1.00° 010° 02 0 k 1 2 1.01° 010° 02 2 1.01° 02		k 1 107_{0} 5 4 910 5 - 4 910 5 - 5 1 848 7 - 1 939 7 - 2 1317 7 2 1 32 7 - 2 134 7 - 2 134 7 - 2 137 7 - 2 144 7 - 2 600 1 - 3 1027 1 - 1 957 7 - 2 137 7 - 2 144 7 - 2 1635 7 - 4 138 7 - 2 1635 7 - 1 137 7 - 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1 107 107 107 107 107 107 107 107 107 10		$ \begin{array}{c} \mathbf{k} & 1 & 107 & 107 & 107 \\ \mathbf{s} & \mathbf{s} & 3 & 3 & 77 & 102 \\ \mathbf{s} & \mathbf{s} & 4 & 377 & 102 \\ \mathbf{s} & \mathbf{s} & 4 & 377 & 102 \\ \mathbf{s} & \mathbf{s} & 4 & 377 & 102 \\ \mathbf{s} & \mathbf{s} & 5 & 577 & 303 \\ \mathbf{s} & \mathbf{s} & 577 & 103 & 577 & 102 \\ \mathbf{s} & \mathbf{s} & 577 & 103 & 103 \\ \mathbf{s} & \mathbf{s} & 577 & 103 & 103 \\ \mathbf{s} & 7 & 11346 & 122 \\ \mathbf{s} & 7 & 11353 & 138 \\ 7 & 5 & 1335 & 138 \\ 7 & 5 & 1335 & 138 \\ 7 & 5 & 1335 & 138 \\ 7 & 5 & 1335 & 138 \\ 7 & 5 & 1335 & 138 \\ 7 & 5 & 1335 & 138 \\ 7 & 5 & 1335 & 138 \\ 7 & 5 & 1335 & 138 \\ 7 & 5 & 1335 & 138 \\ 7 & 5 & 1335 & 138 \\ 7 & 5 & 1335 & 138 \\ 7 & 5 & 1335 & 138 \\ 7 & 5 & 1335 & 138 \\ 7 & 7 & 5 & 1335 & 138 \\ 7 & 7 & 5 & 1335 & 138 \\ 7 & 7 & 5 & 1335 & 138 \\ 7 & 7 & 7 & 1335 & 118 \\ 7 & 7 & 7 & 138 \\ 7 & 7 & 7 & 7 \\ 9 & 1 & 136 & 127 & 77 \\ 9 & 11 & 136 & 123 & 77 \\ 11 & 13 & 23 & 337 & 39 \\ 11 & 13 & 138 & 13 \\ 13 & 13 & 138 & 13 \\ 13 & 13 & 13 & 13 \\ 13 & 13 & 13 & 13 \\ 13 & 13 & 13 & 13 \\ 13 & 13 & 13 & 13 \\ 13 & 13 & 13 & 13 \\ 13 & 13 & 13 & 13 \\ 13 & 13 & 13 & 13 \\ 13 & 13 & 13 \\ 13 & 13 & 13 \\ 13 & 13 & 13 \\ 13 & 13 & 13 \\ 13 & 14 & 13 \\ 13 & 13 & 13 \\ 13 & 14 & 13 \\ 13 & 14 & 13 \\ 13 & 13 & 14 \\ 13 & 13 & 13 \\ 13 & 13 & 13 \\ 13 & 13 & 13 \\ 13 & 13 & 13 \\ 13 & 13 & 13 \\ 13 & 13 & 13 \\ 13 & 13 & 13 \\ 13 & 13 \\ 13 & 13 \\ 13 & 13 \\ 1$	$ \begin{array}{c} \begin{tabular}{ c c c c } \\ \end{tabular} \\ tabu$	$\begin{array}{c} \begin{tabular}{ c c c c } & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $	$\begin{array}{c} 0 \ 10^{\circ} \\ 0 \ 10^{\circ} \\ 0 \ 10^{\circ} \\ 10$	100° 100° 100° 116 101° 114 102° 116 103° 114 103° 114 103° 114 102° 116 103° 114 104° 84 102° 114 1144° 84 101 114 1144° 84 101 115 1144° 84 1159° 123 1159° 123 1159° 123 1159° 123 1159° 123 1159° 123 1159° 123 1159° 135 1158° 136 1158° 136 1158° 136 1111° 138 1111° 138 1111° 138 1111° 138 1111° 138 1111° 13
9. 9.	-2 717 664- 3 163* 62- -3 704 886- 4 543 505	1 0 132* 197- 1 1 162* 24- 1 -1 138* 200- 1 2 1488 1385	6 -5 680 8 0 848 8 1 1514	555-15 0 3 951 15 1 1 1595 15 -1 3	71 1188 5 21 18- 5 - 98 268- 7 79 380- 7	5 885 1054- 5 1762 1540 0 917 895 1 198* 189	14 -4 497 571 14 -5 67* 180 9 k 1 1 0 171* 197	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 - 1 - 191 6 - 2 - 140 - 6 - 2 - 361 - 6 - 3 - 251	* 146- 8 -2 28 * 302 8 -3 12 315 8 -4 48 110- 8 -5 107	1 259- 6 -2 1 4* 7- 6 -3 8 530 6 -4 0 1000- 6 -5	086 1197 737 670 316 247- 418 202
999. 999.	-4 832 904 5 1068 1355- -5 1207 1594	1 -2 113* 79 1 3 1588 1513 1 -3 95* 380	8 2 725 8 -2 605 8 3 1639	711 15 -2 3 555- 15 -3 1902 15 -4	55 257- 7 64* 42- 7 - 42* 66- 7	2 849 850- 2 1177 1161 3 1595 1759	1 -1 449 433- 1 -2 1450 1542 1 -2 1235 1278-	- 8 -5 516 47 - 8 -5 516 47 10 0 966 94 - 10 1 420 45	- 6 -3 157 - 6 -4 339 - 6 -4 134 - 6 -5 184	- 95 10 0 47 298- 10 -1 39 * 218- 10 -2 29 * 4- 10 -3 73	5 400 19 6 204 1 -1 0 189- 1 -2 7 646 1 -3	R 1 747 766- 597 494 90+ 129-
11 11 11	0 169* 164- 1 976 1088 -1 195* 123	1 4 1279 1103 1 -4 888 938- 1 5 195* 150	8 -3 1665 8 4 356 8 -4 985	1757 6 231- 0 0 1 1087- 0 2 1	kl 7 = 59* 180- 7 69* 152- 7 =	3 993 943 4 1403 1522- 4 392 388	1 3 1635 1727 1 -3 652 619 1 4 1000 1073	- 10 -1 1004 95 - 10 2 1069 117 10 -2 149* 12	5 8 0 88 8 8 1 105 0 8 -1 130	776-10-4 75 1177 10-5 10 1301- 15 k	0 613- 1 -4 8* 80- 1 -5 1 3 -1	336 275- 114* 128- 663 633-
11 11 11	-2 967 972- 3 374 445- -3 903 779	3 0 4288 2688 3 1 1705 1754- 3 -1 2183 2121 3 2 665 548	8 -5 172 8 -5 1189 10 0 655 10 1 194	- 278- 0-2 9 1117 0 4 8 747 0-4 9 • 14- 2 0 1	08 1047 7 85 861 7 - 78 900 9 61* 101- 9	> 590 751 5 575 388- 0 170* 187- 1 446 496	1 -4 379 168 1 5 432 488 1 -5 531 326 3 0 570 538	10 3 1060 115 - 10 -3 455 46 10 4 256 33 10 -4 749 69	L 8 2 29 L 8 -2 15 B 8 3 8 L 8 -3 14	; 242 1 0 14 ; 114- 1 -1 17 ; 44 1 -2 43 ; 23- 1 -3 81	y= 40- 3 -2 7* 201- 3 -3 5 458 3 -4 9 759- 3 -5	80* 90- 617 566 370 291 106* 9
11 11 11	4 436 485 -4 580 744- 5 150# 35-	3 -2 1772 1737 3 3 600 613 3 -3 1270 1130	10 -1 196 10 2 171 10 -2 705	* 185 2 1 19 * 212- 2 -1 27 884- 2 2 6	60 2008 9 - 06 2933 9 81 672 9 -	1 317 262 2 703 770- 2 174* 155	3 1 752 711 3 -1 440 405 3 2 534 434	- 10 -5 1114 106 - 12 0 293 19 - 12 1 118* 13	3- 8 4 58 0- 8 -4 32 9 8 -5 125	706 1 -4 48 287 1 -5 93 1208 3 0 94	7 403 5 -2 6 859- 5 -3 3 945 5 -4	60* 55- 331 342 570 517-
11 13 13	-5 502 567 0 433 388- 1 158* 184-	3 4 1321 1465- 3 -4 553 362 3 5 662 610	10 3 614 10 -3 483 10 4 301	612 2 -2 27 400 2 3 11 258- 2 -3 4	53 2955- 9 76 1161 9 - 39 372 9	3 138* 51- 4 160* 57- 4 107* 207-	3 -2 170* 106 3 3 517 474 3 -3 590 580	12 -1 127* 12 12 2 596 77 12 -2 277 9	3 10 0 11 8- 10 1 31 3- 10 -1 13	* 125- 3 1 14 183- 3 -1 154 * 166- 3 -2 117	6* 295- 5 -5 0 1533 20 4 1147 0 -2	430 329 k 1 575 573-
13 13 13	-1 428 406 2 135* 116- -2 137* 37- 3 464 14*	3 -5 936 842- 5 0 393 318 5 1 187* 52- 5 -1 723 757	10 -4 130 10 5 148 10 -5 514 12 0 645	* 264 2 4 25 * 0 2 -4 23 586 2 5 10 614 2 -5 4	92 3106 9 - 17 2382 9 27 1130 9 - 73 286 11	-4 137* 43- 5 127* 417 -5 184* 75 0 586 447	3 4 130* 136 3 -4 137* 28 3 5 163* 354 3 5 1018 624	- 12 -3 311 28 12 -4 657 67 - 12 -5 342 29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	y 502 0 -4 7* 138- 2 -3 2 874- 2 -4 2 394 7 -5	191 10- 295 282 59* 58- 87* 215
13 13 13	-3 919 1001 4 244 264 -4 91* 51-	5 2 167* 273- 5 -2 601 618 5 3 2046 2463	12 1 521 12 -1 950 12 2 465	432 4 0 5 931- 4 1 1 507- 4 -1 1	85 629-11 91* 74 11 - 86* 14 11	1 355 273- 1 221* 46- 2 134* 79-	5 0 1653 1808 5 1 1908 2113 5 -1 846 811	- 1 0 1049 118 1 1 584 54 - 1 -1 1487 176	9 10 -5 13 5 12 0 26 8- 12 -1 23	* 104- 5 1 12 222 5 -1 47 35- 5 -2 60	9* 117 4 -4 0 252 3 545-	403 460
13 13	-5 468 611-	5 -3 153* 133- 5 4 1243 1391	12 -2 694	788- 4 2 6 743- 4 -2 3	62 522 11 - 157 262- 11	2 156* 248 3 113* 44	5 -2 616 625 5 -2 606 552	- 1 2 411 49 - 1 -2 958 100	6 12 - 2 8 4 12 - 3 82	841 5 -4 12	0+ 124	

opposite neighbours along [110] and $[\overline{1}10]$; along [001] the connexion is due to the sharing of the opposite corners.

The alkali cations occur in the cavities left free by the chains. Lithium has a nearly perfect octahedral coordination while sodium is surrounded by seven oxygen atoms that form a sort of octahedron with a 'centered' face and potassium has an irregular coordination polyhedron made up from ten oxygen atoms (Table 4, Fig. 4).

The bond distances between (Fe,Ti) and oxygen atoms have some peculiarities that permit a hypothesis of an acentric structure which would account for the piezoelectricity. All the oxygen atoms but one that take part in the octahedral coordination are shared with tetrahedra; that one is bonded only with (Fe,Ti) and Li. The bond distances between this oxygen and (Fe,Ti) in the two non-equivalent octahedra of the centrosymmetrical structure are among the shortest ones, while the distances of the oxygen atoms at the opposite side of the cations are notably longer than the average. The mean (Fe,Ti)–O distance is 2.05 Å, while these pairs of distances have the following values: 1.918 and 2.218 Å for the former octahedron and 2.010 and 2.195Å for the latter.

An octahedron with four bonds of the same length lying on a plane and two more opposite bonds of fairly different length is a characteristic feature of Ti coordination. This ion has the tendency to bind one of the oxygen atoms of its coordination polyhedron more strongly [cf. piezoelectric barium and lead titanates (Jona & Shirane, 1962); titanite (Zachariasen, 1930); narsarsukite (Peacor & Buerger, 1962)]. The chemical formula derived from the cited analyses shows a remarkable constancy in the titanium content while iron is present in variable amount and it is often replaced by manganese. It may be thought that probably Fe and Ti are not replaceable cations and therefore also in the centrosymmetrical case, one series of equivalent points might be occupied by Ti only and the other by Fe and the ions that replace it. But the cited feature of pairs of bond distances with different length is present in both non-equivalent octahedra; probably this is a wrong detail introduced in the structure because it has been considered as centrosymmetrical.

In Fig. 5(a) there is a schematic view of the chains of the octahedra; these are distinguished in two nonequivalent series for the centrosymmetrical case. Fig. 5(b) shows the same chains built up by two series of non-equivalent octahedra that give rise to an acentric structure in the space group Cc. Considering this structure (on the hypothesis that it is the correct one) on the basis of a centrosymmetrical space group, half of the points actually occupied by Fe would be considered as occupied by Ti and vice versa. Owing to this fact, a coordination feature characteristic of Ti would be found in both non-equivalent octahedra.

To carry out a refinement of the non-centrosymmetrical structure, the following modifications of the centric one were made: (a) Fe and Ti were put alternately on the chains parallel to [110] and [110] (Table 5); (b) the parameters of three oxygen atoms were slightly modified in order to make the coordination around the Fe uniform and maintain the characteristic distorted octahedra around Ti (Table 5). Such an arrangement

Fig.2. The crystal structure of neptunite. Top left and right: the two systems of chains of tetrahedra and (top centre) their superposition. Bottom left: the chains of octahedra; bottom centre: their connexion with the chains of tetrahedra; bottom right: the positions of alkaline cations (for their coordination see Fig.4).

Table 5. Atomic coordinates in space group Cc

	x/a	y/b	z/c
Fe(1)	0.160	0.179	-0.098
Fe(2)	0.412	0.444	-0.113
Ti(1)	0.340	0.321	0.098
Ti(2)	0.088	0.056	0.113
O(2)	0.452	0.332	0.056
O(2')	0.045	0.175	-0.067
0(4)	0.372	0.439	0.235
O(4')	0.128	0.054	-0.242
O(7)	0.209	0.298	0.061
O(7')	0.291	0.192	-0.071

The parameters of the remaining atoms are unchanged from those given in Table 2.

Fig. 3. Schematic view of the basic network of SiO₄ tetrahedra. Silicon atoms only are shown.

can account for piezoelectricity: in Fig. 5(b) it is shown that all the octahedra around Ti have their shortest bonds pointing to the positive **c** direction and their longest bonds to the negative **c** direction. Because of this the direction of **c** is polar.

A structure factor calculation carried out with these modifications gave R=0.12 (0.15 for all reflexions).

Fig. 5. Schematic view of the chains of the (Fe,Ti) octahedra in the C2/c (a) and Cc(b) space groups.

Fig.4. Projection of $\frac{1}{2}$ unit cell and key to the identification of the atoms and their coordination.

The discrepancy index, owing to the small magnitude of the shifts, the small number of the shifted atoms and the slight difference between the atomic scattering factors of Ti and (Fe,Mg), does not verify that the hypothesis is right or that it is wrong.

As a result of the above considerations we can assign to neptunite the following chemical formula:

,

$LiNa_2K(Fe,Mg,Mn)_2(TiO)_2[Si_8O_{22}]$.

Some observations can be made on the electrostatic equilibrium of the crystal structure. If we consider all the bonds as ionic and divide the charge of each cation among the anions of its coordination polyhedron, some notable deficiencies of electrostatic equilibrium are

Table 4. Interatomic distances (Å), angles (°) and their standard deviations (in brackets) The distances preceded by an asterisk occur twice

		The distances p	receded by an	asterisk eee			
Atoms	Bond length	Atoms	Bond angle	Atoms	Bond length	Atoms	Bond angle
Si(1)O(7) O(8) O(9) O(11)	1.580 (12) 1.623 (15) 1.597 (15) 1.608 (10)	O(7)Si(1)O(8) O(9) O(11) O(8)Si(1)O(9) O(11) O(9)Si(1)O(11)	112·4 (8) 112·1 (7) 116·1 (6) 104·3 (7) 108·2 (6) 102·6 (8)	NaO(3) O(5) O(6) O(6') O(7) O(10) O(12)	2·414 (22) 2·482 (18) 2·514 (18) 2·927 (24) 2·553 (17) 2·491 (16) 2·726 (9)	O(3)NaO(5) O(6) O(6') O(7) O(10) O(12) O(5)NaO(6)	76.6 (5) 97.2 (6) 56.7 (5) 89.8 (5) 158.4 (7) 141.2 (7) 158.1 (6)
Si(2)O(2) O(10) O(11) O(12)	1.612 (9) 1.586 (11) 1.671 (9) 1.678 (15)	O(2)Si(2)O(10) O(11) O(12) O(10)Si(2)O(11) O(12) O(11)Si(2)O(12)	116·8 (7) 107·3 (5) 110·0 (7) 111·3 (6) 107·1 (6) 103·6 (8)	0(12)	2 120 (3)	O(6)/10/0(6') O(7) O(10) O(12) O(6)NaO(6') O(7) O(10)	113.8 (5) 69.2 (5) 83.3 (5) 136.0 (5) 78.1 (1.2) 90.1 (5) 98.7 (6)
Si(3)O(5) O(6) O(8) O(9)	1.653 (12) 1.600 (15) 1.625 (18) 1.672 (12)	O(5)Si(3)O(6) O(8) O(9) O(6)Si(3)O(8) O(9) O(8)Si(3)O(9)	112·1 (7) 111·1 (8) 112·7 (8) 107·7 (1·0) 107·9 (7) 105·0 (6)			$\begin{array}{c} O(12) \\ O(12) \\ O(6')NaO(7) \\ O(10) \\ O(12) \\ O(7)NaO(10) \\ O(12) \\ O(10)NaO(12) \end{array}$	59.8 (4) 141.9 (5) 141.5 (5) 86.6 (5) 75.6 (5) 118.5 (5) 60.2 (4)
Si(4)O(1) O(3) O(6) O(12)	1.671 (13) 1.566 (21) 1.666 (14) 1.618 (12)	O(1)Si(4)O(3) O(6) O(12) O(3)Si(4)O(6) O(12) O(6)Si(4)O(12)	117·4 (8) 107·9 (8) 108·9 (7) 105·7 (1·1) 110·4 (7) 105·8 (7)	KO(8) O(9) O(11) O(11') O(12)	*2.837 (9) *2.815 (10) *3.214 (13) *3.104 (19) *2.853 (11)	O(8)K O(9) O(11) O(11) O(12) O(8) O(9)	55·2 (4) 50·8 (3) 104·9 (4) 71·4 (3) 143·3 (7)
(Fe,Ti)(1)O(2) O(4) O(5) O(7) O(7') O(10)	2.045 (12) 1.918 (13) 2.096 (16) 2.065 (11) 2.218 (13) 1.990 (11)	$\begin{array}{c} O(2)(Fe,Ti)(1) O(4) \\ O(5) \\ O(7) \\ O(7') \\ O(10) \\ O(4)(Fe,Ti)(1) O(5) \\ O(7') \\ O(7') \\ O(7') \\ O(5)(Fe,Ti)(1) O(7') \\ O(7') \\ O(7) \\ O(7)(Fe,Ti)(1) O(7') \\ O(10) \\ O(7')(Fe,Ti)(1) O(10) \\ \end{array}$	95.8 (5) 80.9 (5) 164.7 (6) 87.5 (5) 93.7 (6) 96.2 (5) 174.8 (4) 94.8 (5) 88.9 (5) 83.0 (5) 167.4 (6) 79.9 (1.0) 99.4 (5) 89.2 (5)			O(9) O(11") O(11") O(12') O(9)K O(11) O(12) O(12) O(11) O(11") O(11") O(11") O(11") O(11") O(11") O(11") O(11") O(11") O(11") O(11") O(11") O(11") O(11") O(11") O(11") O(11") O(11") O(12") O(11") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(12") O(11") O(12") O(12") O(12") O(11") O(12") O(11") O(12") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(11") O(12") O(11") O(11") O(11") O(11") O(12") O(11") O(11") O(11") O(12") O(11") O(11") O(11") O(12") O(11") O(12") O(11") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12") O(11") O(12")	$\begin{array}{c} 119 \cdot 1 \ (4) \\ 98 \cdot 6 \ (4) \\ 80 \cdot 7 \ (4) \\ 140 \cdot 5 \ (3) \\ 94 \cdot 2 \ (3) \\ 49 \cdot 7 \ (3) \\ 95 \cdot 5 \ (3) \\ 133 \cdot 4 \ (3) \\ 95 \cdot 5 \ (3) \\ 133 \cdot 4 \ (3) \\ 95 \cdot 5 \ (3) \\ 133 \cdot 4 \ (3) \\ 95 \cdot 5 \ (3) \\ 133 \cdot 1 \ (8) \\ 96 \cdot 9 \ (3) \\ 80 \cdot 1 \ (8) \\ 63 \cdot 2 \ (7) \\ 168 \cdot 6 \ (3) \\ 113 \cdot 2 \ (3) \end{array}$
(Fe,Ti)(2)O(1) O(1') O(2) O(3) O(4) O(5)	2.067 (9) 2.067 (15) 2.195 (12) 1.986 (15) 2.010 (13) 2.057 (14)	$\begin{array}{c} O(1)(Fe,Ti)(2) \ O(1') \\ O(2) \\ O(3) \\ O(4) \\ O(5) \\ O(1')(Fe,Ti)(2)O(2) \\ O(3) \\ O(4) \\ O(5) \\ O(2)(Fe,Ti)(2) \ O(3) \\ O(4) \\ O(5) \\ O(3)(Fe,Ti)(2) \ O(4) \\ O(5) \\ O(4)(Fe,Ti)(2) \ O(5) \\ O(4)(Fe,Ti)(2) \ O(5) \\ O(5) \\ O(4)(Fe,Ti)(2) \ O(5) \\ O(5$	$\begin{array}{c} 81\cdot3 \ (1\cdot0)\\ 86\cdot2 \ (5)\\ 91\cdot8 \ (8)\\ 94\cdot4 \ (5)\\ 162\cdot4 \ (7)\\ 80\cdot0 \ (5)\\ 170\cdot1 \ (5)\\ 95\cdot6 \ (6)\\ 87\cdot7 \ (6)\\ 92\cdot6 \ (5)\\ 175\cdot4 \ (6)\\ 78\cdot3 \ (5)\\ 91\cdot9 \ (6)\\ 97\cdot2 \ (8)\\ 100\cdot4 \ (5) \end{array}$	LiO(1) O(2) O(4)	*2·130 (20) *2·151 (19) *2·041 (11)	O(11 ^{///}) O(12)K O(12') O(12)K O(12') O(1)LiO(2) O(4) O(1') O(2)LiO(4) O(2)LiO(4) O(4)LiO(4')	162.5 (6) 52.2 (3) 88.0 (7) 179.2 (5) 91.6 (6) 100.2 (2.1) 79.6 (5) 86.9 (6) 89.1 (6) 100.6 (2.0) 92.4 (6) 177.6 (2.6)

evident: the positive charge for each oxygen atom is generally slightly higher than 2, but for three oxygen atoms is much lower: 1.6 for O(3) and O(10), 1.2 for O(4). This last case is represented by the oxygen not bonded with silicon and with a possible covalent bond with titanium. Generally it is rather difficult to verify the electrostatic equilibrium in a crystal containing titanium. It is very probable that the whole electrostatic equilibrium is affected by the distortion of the TiO₆ octahedron. It is a matter of fact that considering the bonds as purely ionic, potassium and, in part, also the other alkaline ions would be in contact with oxygen atoms which are apparently neutral because they are shared by two SiO₄ tetrahedra.

However, conclusive statements will be possible only after a refinement of the non-centrosymmetrical structure, by using a greater amount of experimental data.

We wish to thank Prof. F. Sgarlata, who kindly made available to us his program for three-dimensional refinement.

References

AHMED, F. R. & CRUICKSHANK, D. W. J. (1953). Acta Cryst. 6, 385.

BELOV, N. V. (1963). Acta Cryst. 16, A7.

BERRY, L. G. (1963). Canad. Min. 7, 679.

BRADLEY, W. M. (1909). Amer. J. Sci. 28, 15.

- CANNILLO, E., MAZZI, F. & ROSSI, G. (1965). Rendiconti della S. M. I. 21, 348.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65, 154.
- DARLOW, S. F. (1960). Acta Cryst. 13, 683.
- FERSMAN, A. E. (1926). Amer. Min. 11, 289.
- FLINK, I. G. (1895). Neues Jahrb. Min. Geol. Pal. Band 1, 452 (abstract).
- FORD, W. E. (1909). Amer. J. Sci. 27, 235.
- GÖSSNER, B. (1925). Z. Min. Geol. Pal. Abt. A, 73.
- GÖSSNER, B. & MUSSGNUG, F. (1928). Z. Min. Geol. Pal. Abt. A, 274.
- HEINRICH, E. W. M. & QUON, S. H. (1963). Canad. Min. 7, 650.
- JONA, F. & SHIRANE, G. (1962). *Ferroelectric Crystals*, pp. 108, 235. Oxford: Pergamon Press.
- LOUDERBACK, G. D. (1910). Neues Jahrb. Min. Geol. Pal. Band 2, 15 (abstract).
- MOORE, F. H. (1963). Acta Cryst. 16, 1169.
- NOCKOLDS, S. R. (1950). Miner. Mag. 29, 27.
- PEACOR, D. R. & BUERGER, M. J. (1962). Amer. Min. 47, 539.
- SAKURAI, T. (1962). Acta Cryst. 15, 443.
- SAYRE, D. (1952). Acta Cryst. 5, 60.
- SJÖSTRÖM, D. A. (1895). *Neues Jahrb. Min. Geol. Pal.* Band 1, 457 (abstract).
- STRUNZ, U. (1957). *Mineralogische Tabellen*, p. 286. Leipzig: Akad. Verlag Ges. Geest & Portig K.-G.
- WOOLFSON, M. M. (1961). Direct Methods in Crystallography, Chap. 3. Oxford: Clarendon Press.
- ZACHARIASEN, W. (1930). Z. Kristallogr. 73, 7.

Acta Cryst. (1966). 21, 208

A Discussion of the Distribution of Bonded Electron Density

BY A. M. O'CONNELL*, A. I. M. RAE[†] AND E. N. MASLEN

Department of Physics, University of Western Australia, Nedlands, Western Australia

(Received 14 December 1965)

The final difference syntheses on a number of previously published structures are examined for evidence of bonding electrons. It is found that the aromatic C–C bond contains a residual peak of maximum height about 0.2 e.Å^{-3} with half height extensions of about 0.3 Å in, and 0.75 Å perpendicular to, the trigonal plane. In some cases direct evidence is also obtained for charge movements in the molecule. The experimental results are compared with those calculated from Slater wave functions. The agreement is generally good, but discrepancies remain which can be attributed to the neglect of σ orbital contraction and electron correlation in the theoretical calculations. It is found that refinement of structures by use of isolated atom wave functions leads to significant errors in the parameters, not only of terminal atoms, but also of trigonally bonded atoms with hydrogen substituents.

1. Introduction

The structure analysis of β -sulphanilamide (O'Connell & Maslen, 1966) has provided detailed information on the electron density distribution in the C–C, C–N and C–S bonds in this molecule. The difference synthesis

shows peaks in the bonds which reach maxima near the bond centres and which extend a considerable distance above and below the plane of the molecule. The existence of such residual features in difference maps has been known for some time and detailed projection studies were carried out by Cochran (1953, 1956) and Mason (1960). However, since the advent of highly accurate three-dimensional structure analysis, remarkably little attention has been paid to features in the residual electron density maps. In fact, an extensive

^{*} Present address: Institute of Medical Biochemistry, University of Göteborg, Göteborg SV, Sweden.

[†] Present address: Department of Chemistry, The University, Sheffield 10, England.