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The Crystal Structure of Neptunite*
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When this work was begun the following chemical and crystallographic data of neptunite were avail-
able: formula KNa3Fe,Tix(Si4012)2; lattice parameters: a= 1646, b=12-50, ¢=10-01 A, f=115°26",
space group C2/¢, Z=4. A new chemical analysis showed the presence of some lithium that had been
determined as sodium in previous analyses. On this basis the crystal structure analysis was carried out
by the use of three-dimensional Patterson and Fourier syntheses, direct methods and least-squares
refinement of atomic parameters (final R=0-117). The structure is based upon a new three-dimensional
network of SiO4 tetrahedra. When the structure determination was nearly accomplished a piezoelectric
effect was detected. A crystal structure with space group Cec is postulated which is fairly similar to the
centrosymmetrical one and could explain the piezoelectricity. Chemical and crystallographic considera-
tions suggest the following formula for neptunite: LiNa,K(Fe,Mg,Mn),(Ti0)2[Sig022].

Introduction

Neptunite was first found at Julianehaab (Greenland)
by Flink (1895) who studied it from an optical and
morphological point of view. He pointed out also a
kind of morphological relationship between neptunite
and titanite (sphene). Subsequently neptunite was
found at San Benito (California) and studied by Ford
(1909); Bradley (1909) and Louderback (1910) gave
chemical analyses of Californian neptunite. In 1926
Fersman studied and analysed a manganese-rich (MnO
9-959;) neptunite from the Kola Peninsula. At the same
time Gossner (1925) noticed a crystallographic analogy
between neptunite and aegirine. G3ssner & Mussgnug
(1928) first reported the cell parameters of neptunite
from San Benito. Nockolds (1950) re-examined the
optical properties of neptunite and Heinrich & Quon
(1963) found the mineral at Seal Lake, Labrador, and
summarized the properties, particularly the optical ones,
of neptunites studied up to that time. Further values
of the cell data were given by Berry (1963) together
with X-ray powder data.

Strunz (1957) considers neptunite as a silicate with
rings of four SiO, tetrahedra while Belov (1963), on
the basis of theoretical considerations, suggests that
a particular kind of chain of tetrahedra, extended
around a pseudo fourfold screw axis, is present.

The present study was started with the following
data:chemical formula: KNa,Tiy(Fe,Mg,Mn)(Si4012)s;
cell parameters: a=1646, b=12-50, c=10-01 A (all
+0-01), f=115°26"; space group C2/c, Z=4.

Experimental

The X-ray diffraction data were collected from a single-
crystal fragment of neptunite from San Benito which
was made nearly cylindrical; the radius of this cylin-

* Paper presented at the XXI Congress of the Societa
Mineralogica Italiana, Pisa, Italy, October 1964. Cannilio,
Mazzi & Rossi (1965).

drical sample was 0-011 cm and the ¢ axis was parallel
to the axis of the cylinder. Multiple film Weissenberg
photographs of the integrated reflexions hk/ (/ from
0 to 5) were taken with Cu Ko radiation and preces-
sion pictures of the reflexions A0/ were recorded with
Mo Ko radiation. The intensities were measured with
a Nonius microdensitometer. The corrections applied
to the intensities were concerned with absorption, in-
cipient but incomplete a; —a, spot doubling (Sakurai,
1962) and Lorentz-polarization. The linear absorption
coefficient of neptunite is u=281 cm~! for Cu Ka and
the transmission factors varied from 0-12 to 0-91. A
secondary extinction correction was applied during the
refinement (see below).

Structure analysis

Patterson projections along [010] and [001] were first
calculated. While the latter projection did not vield
any immediate information, the former [Fig.1(a)]
showed nearly all the maxima aligned on directions
parallel to [100] at w ranges of  (i.e. at w=0, §, %, $).
On the basis of this observation, four Patterson sections
normal to [001] at the w levels given above were cal-
culated. In addition, in order to record the Patterson
maxima with a different w, [001] Patterson projected
slabs % ¢ thick, with the middle part at the same levels,
were computed. The two kinds of Patterson syntheses
did not appear appreciably different.

A rough computation showed that the heights of
the Patterson peaks defining distances between equi-
valent points were too low to be useful, even for the
Fe-Fe distances, so that the high maxima actually
present in the Patterson sections must be related to
distances between non-equivalent atoms occurring
many times. This prevents the determination of the
crystal structure considering Fe and Ti as heavy atoms.

According to the assumed space group C2/c, an ar-
rangement of Patterson maxima with w coordinates
like those observed could be obtained only if the z
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coordinates of most of the atoms were: (@) 0, 3, %, 3,
%, 20r ()& %, 55 i 3, L. From the four Patterson
sections [Fig.1(b)] one can remark that while on the
sections at w=0 and } the highest maxima are at v=0,
v=% and v=4, on the section at w=} and w=4 the
most relevant ones are at v=4%, v=4 efc. The coordi-
nates of the equivalent points suggest that an arrange-
ment like that mentioned above is consistent with the
z coordinates of type (b), while with coordinates of
type (a) the positions of the maxima on the Patterson
sections at w=¢ and w=1 must be interchanged. On
the Patterson sections at w=0 and w=%} two large
maxima are present, namely: A (#=0-133, v=0) and
B (u=0-050, v=0-117). This pair offers a clue for the
resolution of the structure because it gives rise to vec-
tors with a modulus of about 2 A. Such vectors could
be referred only to (Fe,Ti)-O distances; moreover the
maxima are arranged in such a way that they corre-
spond to the six vectorial distances of a nearly perfect
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octahedron. The further consideration that the 4 and
B maxima are fairly high, although they are due to
distances from oxygen atoms, leads to the conclusion
that all the (Fe,Ti)-O octahedra have the same orien-
tation in the unit cell.

The strongest Patterson peak (C) occurs at u=1},
v=%, w=0 and it is clearly due to a vectorial distance
repeated many times: if all the octahedra have the
same orientation this peak may represent distances be-
tween homologous atoms of the octahedra, particularly
between the (Fe,Ti) cations. If also the high peaks D
(u=0-166, v=0-117) and E (#=0-416, v=0-416) are
thought to be due to distances between the same atoms,
two kinds of chains of octahedra may be found con-
sistent with the coordinates of the equivalent points
in the chosen space group and with the considerations
made on the Patterson sections. One of the two fol-
lowing sets of approximate parameters could therefore
be assigned to (Fe,Ti):
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Fig. 1. (a) Patterson projection normal to [010]. (b) Patterson fectilons normal to [010]. Contours are drawn at equal but arbitrary
evels.,
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x/a y/b z/c
(a) (Fe,Ti)(1) 0-208 0-187 0-083
(Fe,Ti)(2) 0-458 0-437 0-083
(b) (Fe,Ti)(1) 0-333 0-310 0-083
(Fe,Ti)(2) 0-083 0-062 0-083

Some more Patterson peaks remained, apparently
not due to (Fe,Ti)-(Fe,Ti) and (Fe,Ti)-O distances,
namely the F and G maxima on the section at w=0
and the L and H maxima on the synthesis at w=4§.
These peaks are consistent with the supposition of
pairs of silicon atoms lying on lines parallel to [110]
and [T10] at opposite sides of the chains of the (Fe,Ti)-O
octahedra. In such a way, bearing in mind the alter-
native pairs of coordinates of (Fe,Ti), two sets of equi-
valent points could be assigned to silicon atoms, the
approximate parameters of which are, for model (a):

x/a v/b z/c
Si(1) 0-375 0-062 0-083
Si(2) 0-042 0312 0-083
Si(3) 0-625 0312 0-083
Si(4) 0-292 0-562 0-083
and for model (b):
Si(1) 0-166 0-437 0-083
Si(2) 0-500 0-187 0-083
Si(3) 0250 —-0-062 0-083
Si(4) —0-083 0-187 0-083

Both models can be derived from a close-packed
arrangement of the oxygen atoms. Taking the atomic
diameter of oxygen to be a little more than 3 A, the
cell dimensions allow the distribution of the oxygen
atoms on a nearly tetragonal body centered lattice
whose unit cell has the following dimensions: a’=3-02
A (normal to the (001) plane), b'=3:13 A (parallel to
b), ¢’=4-12 A (parallel to a). If some series of octahedra
and tetrahedra are built up with oxygen atoms in a
way consistent with Patterson syntheses, model (a) is
obtained by putting some oxygen atoms on the two-
fold axes, and model (b) results from putting no oxygen
atoms on them. In both cases the condition was ful-
filled that each SiO, tetrahedron shared only a corner
with other polyhedra (SiO, tetrahedra, (Fe, Ti)O4 octa-
hedra). The two structural models are rather similar
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as far as the linking of SiO, tetrahedra in directions
nearly parallel to [110] and [110] is concerned, but are
different in the linking of such polyhedra along [001].
The same consideration is true for the linking of
(Fe,Ti)Og octahedra. From this point of view both
models seem to be possible and the real structural
arrangement cannot be decided.

At this stage of the work an attempt was made to
settle the question by means of direct methods. The
131 strongest reflexions were examined and the deter-
mination of the signs of the corresponding structure
factors was tried by the application of Sayre’s (1952)
relation: Shkr="Sh'k't's Shah's kik's Lil’

Owing to the rather high value of the unitary struc-
ture factor of these reflexions, there was a very high
probability of a correct identification of their phases.
Using the Woolfson (1961) method, a coherent set of
signs was given to 98 reflexions (among which were
those with ~A=2n, /=2n); for the remaining ones, two
alternative self-consistent sets of signs were possible.
Electron density projections permitted the rejection of
one of these sets of signs because it disagreed with the
above models; the other gave a result in full agreement
with model (b) of the structure.

All previous considerations made and some electron
density syntheses permitted the identification of the
positions of the oxygens, of the potassium atoms (on
fourfold series of equivalent points) and of two-thirds
of the sodium atoms (on an eightfold series of equi-
points). The positions of the remaining sodium atoms
were not detected, but they obviously could be only
on a fourfold series of equivalent points. The electron
density syntheses showed a low peak on a twofold axis,
but sodium could not be put in that position because
it would have been surrounded by six oxygen atoms
at distances of little more than 2 A. However there
was no place, besides the one above mentioned, where
it was possible to put an atom.

Then the possibility that the chemical formula might
be incorrect was considered. Actually all the chemical
analyses of neptunite give a total percentage of oxides
greater than 100, and three of them in a rather signi-
ficant way (Table 1). Besides this the chemical formula

Table 1. Chemical analyses of neptunite*

1 2 4 5 6
SiO, 51:53 51-93 52-87 53-44 52-68 52-29
TiO; 1813 17-45 17-83 17-18 18-21 17-35
FeO 1091 10-23 11-69 11-:23 5:16 11-92
MnO 4-97 5:32 0-85 1-78 995 2:27
MgO 0-49 — 1-44 1-82 012 1-55
CaO — 0-71 1-56 0-25 0-43 0-62
K20 4-88 571 5-08 5:39 4-94 5:58
Na,O0 9:26 9:63 9-56 9-14 916 6+81
Li,O — — — — — 1-63
Total 100-17 100-98 100-88 100-23 100-65 100-02

* 1. Julianehaab (Flink, 1895), 2. Julianehaab (Sjostrom, 1895), 3. San Benito (Bradley, 1909), 4. San Benito (Louderback,

1910), 5. Kola (Fersman, 1926), 6. San Benito (this paper).
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computed from each analysis gives a figure for the
number of sodium atoms less than 3 (ranging from
2-67 to 2-85) against a constant number of 1 for potas-
sium. This sodium defect could be partially or totally
balanced by the presenc: of a little calcium replacing
some sodium. However, these considerations and the
results of the structural analysis led to the opinion that
all the discrepancies would disappear if some lithium
were present. This lithium could have been considered
as sodium in the chemical analyses because sodium
was determined as the difference between the total
chlorides and the potassium chloride. A new chemical
analysis of neptunite was carried out and lithium chlor-
ide was separated by treating the chlorides with alco-
hol-ether, in which only the lithium chloride is soluble.
The result is given in Table 1.

The refinement was carried out by means of some
cycles of least-squares (full matrix, isotropic temper-
ature factor for each atomic species, equal weight for
all reflexions). The structure factors were calculated by
using the atomic scattering factors obtained from
Moore’s constants (1963) and considering iron and
titanium as replaceable cations. All the calculations
were carried out with an ELEA 6001 digital computer.
A plot of In I/I, against I, for the most intense re-
flexions showed a conspicuous secondary extinction
effect. A linear relation between In I,/I, and I was
assumed and a least-squares secondary extinction co-
efficient derived. This was applied to all the F,’s by
means of the formula:

(Fo) corr:(Fo) ext. exp("z*&‘lc) Where &= 1:76 x 10-6 .

The refinement lowered the discrepancy index from
0-40 to 0-117 for the observed reflexions and 0-155 for
all the reflexions (giving to the unobserved ones a value
half of the least observed intensity).

The atomic parameters and their standard deviations
(Cruickshank, 1949) are given in Table 2. The isotropic
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thermal parameters are: Bre,1i =152, Bna =206, Bx =
1-72, Bri=4-47, Bs;=0-80, Bo=1-44 A2, The observed
and calculated structure factors are compared in
Table 3.

At this stage of the work, when the determination
of the crystal structure seemed accomplished in the
space group C2/c, the opportunity was offered to sub-
ject neptunite to a test for piezoelectricity, which gave
a positive effect. It seemed rather improbable that a
completely wrong structure could give such good agree-
ment with experimental data, so an attempt was made
to see whether it was possible to obtain, from the
centric model, an acentric structure so as to justify
the rather strong piezoelectric effect. In the next sec-
tion, after the description of the ‘centrosymmetrical’
structure, a suggestion will be made as to what might
be the real structural model.

Description of the structure

The basic structure of neptunite is a three-dimensional
network of SiOy tetrahedra. This network is different
from that of framework silicates because each tetra-
hedron shares only two or three oxygen atoms with
its neighbours. This arrangement is built up (Fig.2)
by two series of chains of tetrahedra extended roughly
along [110] and [110]; these chains, sharing some oxy-
gen atoms, give rise to other chains along [001]. The
network can be imagined as the repetitition by trans-
lation of a ‘cage’ built up from two rings of 18 SiO,
tetrahedra and four rings of 14 SiO, tetrahedra. The
‘cage’ represents a stoichiometric unit corresponding
to [Si;¢044]24~ (Fig.3). Actually there are two identical
systems of ‘cages’; they are interlaced and tied together
by the (Fe,Ti)Og octahedra that are connected in such
a way as to determine a further network which has
dimensions comparable to those of the ‘cages’ of tetra-
hedra. Each octahedron shares two edges with its two

Table 2. Atomic coordinates and their standard deviations (standard deviations of fractional coordinates in parentheses)

xla ylb
(Fe,Ti)(1) 0-3402 (1) 0-3211 (2)
(Fe, Ti)(2) 0-0883 (1) 00561 (2)
Na 0-2640 (4) 0-1983 (6)
K 0-0000 0-4204 (3)
Li 0-5000 0-4353 (18)
Si(1) 0-1452 (2) 0-4060 (3)
Si(2) 0:5233 (2) 0-2280 (3)
Si(3) 0-7698 (2) 0-4741 (3)
Si(4) 0-8942 (2) 0-1491 (3)
o(1) 0-9538 (5) 0-0446 (10)
0(2) 0-4549 (5) 0:3253 (7)
0Q@3) 0-1099 (13) 0-1673 (9)
04) 0-:3723+(6) 0-4387 (10)
0o(5) 0-2050 (6) 0-0796 (10)
0(6) 0-7122 (11) 0-3677 (12)
o7 0-2088 (6) 0-3077 (10)
0O(8) 0-8339 (5) 0-4919 (9)
09) 0-1592 (4) 0:4505 (7)
0O(10) 0-3975 (6) 0-2104 (7)
O(11) 0:4613 (7) 0:1173 (7)
0(12) 0-9291 (5) 0-2562 (8)
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zfc a(x) a(y) o(z)
0-0983 (4) 0-002 A 0-003 A 0-004 A
0-1128 (4) 0-002 0-003 0-004
0-3094 (11) 0-007 0-007 0-011
0-2500 0-004
0-2500 0-023
0-0566 (7) 0-003 0-004 0-007
0-0855 (7) 0-003 0-004 0-007
0-1083 (7) 0-003 0-004 0-007
0-0816 (8) 0-003 0-004 0-008
0-0688 (18) 0-008 0-012 0-018
0-0666 (16) 0-008 0-009 0-016
0-2664 (18) 0-021 0-011 0-018
0-2348 (16) 0-010 0-012 0-016
0-0888 (19) 0-010 0-012 0-019
0-0427 (19) 0-018 0-015 0-019
0-0707 (16) 0-010 0-012 0-016
0-0239 (19) 0-008 0-011 0-019
0-2143 (15) 0-0)7 0-029 0-015
0-2541 (15) 0-010 0-009 0-015
0-0239 (19) 0-011 0-009 0-19
0-0316 (14) 0-208 0-010 0-014
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Table 3. Structure factors of neptunite

Reflexions marked * were unobservably weak; in these cases Fops are derived from 0-5 Iobs min.
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opposite neighbours along [110] and [110]; along [001]
the connexion is due to the sharing of the opposite
corners.

The alkali cations occur in the cavities left free by
the chains. Lithium has a nearly perfect octahedral co-
ordination while sodium is surrounded by seven oxy-
gen atoms that form a sort of octahedron with a
‘centered’ face and potassium has an irregular coor-
dination polyhedron made up from ten oxygen atoms
(Table 4, Fig.4).

The bond distances between (Fe,Ti) and oxygen
atoms have some peculiarities that permit a hypothesis
of an acentric structure which would account for the
piezoelectricity. All the oxygen atoms but one that take
part in the octahedral coordination are shared with
tetrahedra; that one is bonded only with (Fe,Ti) and
Li. The bond distances between this oxygen and (Fe,Ti)
in the two non-equivalent octahedra of the centrosym-
metrical structure are among the shortest ones, while
the distances of the oxygen atoms at the opposite side
of the cations are notably longer than the average.
The mean (Fe,Ti)-O distance is 2:05 A, while these
pairs of distances have the following values: 1918 and
2-218 A for the former octahedron and 2-010 and 2195
A for the latter.

An octahedron with four bonds of the same length
lying on a plane and two more opposite bonds of
fairly different length is a characteristic feature of Ti
coordination. This ion has the tendency to bind one
of the oxygen atoms of its coordination polyhedron
more strongly [¢f. piezoelectric barium and lead tita-
nates (Jona & Shirane, 1962); titanite (Zachariasen,
1930); narsarsukite (Peacor & Buerger, 1962)].
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The chemical formula derived from the cited analyses
shows a remarkable constancy in the titanium content
while iron is present in variable amount and it is often
replaced by manganese. It may be thought that prob-
ably Fe and Ti are not replaceable cations and there-
fore also in the centrosymmetrical case, one series of
equivalent points might be occupied by Ti only and
the other by Fe and the ions that replace it. But the
cited feature of pairs of bond distances with different
length is present in both non-equivalent octahedra;
probably this is a wrong detail introduced in the struc-
ture because it has been considered as centrosymme-
trical.

In Fig.5(a) there is a schematic view of the chains
of the octahedra; these are distinguished in two non-
equivalent series for the centrosymmetrical case. Fig.
5(b) shows the same chains built up by two series of
non-equivalent octahedra that give rise to an acentric
structure in the space group Cec. Considering this struc-
ture (on the hypothesis that it is the correct one) on
the basis of a centrosymmetrical space group, half of
the points actually occupied by Fe would be considered
as occupied by Ti and vice versa. Owing to this fact,
a coordination feature characteristic of Ti would be
found in both non-equivalent octahedra.

To carry out a refinement of the non-centrosymmet-
rical structure, the following modifications of the cen-
tric one were made: (a) Fe and Ti were put alternately
on the chains parallel to [110] and [110] (Table 5);
(b) the parameters of three oxygen atoms were slightly
modified in order to make the coordination around
the Fe uniform and maintain the characteristic distort-
ed octahedra around Ti (Table 5). Such an arrangement

Fig.2. The crystal structure of neptunite. Top left and right: the two systems of chains of tetrahedra and (top centre) their super-
position. Bottom left: the chains of octahedra; bottom centre: their connexion with the chains of tetrahedra; bottom right:
the positions of alkaline cations (for their coordination see Fig.4).
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Table 5. Atomic coordinates in space group Cc can account for piezoelectricity: in Fig. 5(d) it is shown
that all the octahedra around Ti have their shortest

xla yib z/c bonds pointing to the positive ¢ direction and their
Fe(1) 0-160 0-179 —0-098 longest bonds to the negative ¢ direction. Because of
Fe(2) 0-412 0-444 —0-113 this the direction of ¢ is polar.
,}::gg 8:3‘;2 8:3§é g:‘l)?g A structure factor calculation carried out with these
0(2) 0452 0-332 0056 modifications gave R=0-12 (0-15 for all reflexions).
029 0-045 0-175 —0-067
04) 0:372 0-439 0-235
o) 0128 0-054 —0242 ol ) ! ) Tasinp
o 0-209 0-298 0-061 e .
o) 0-291 0-192 —-0-071

The parameters of the remaining atoms are unchanged from "{,f,/////% W= =\ ////{%\\\\\
those given in Table 2. Uz //{/////%\\\\\\\ ,ﬂ%&\\\\{!’“’""

’ll[”w ‘
o N

pe
‘%‘ -—- %N’Q%

N Y=/

[001]

- ,/:‘,7',’}1142},

R

b )

Fig. 3. Schematic view of the basic network of SiOy4 tetrahedra,  Fig.5. Schematic view of the chains of the (Fe,Ti) octahedra
Silicon atoms only are shown. in the C2/c (a) and Cc(b) space groups.

.9"

Fig.4. Projection of § unit cell and key to the identification of the atoms and their coordination.
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The discrepancy index, owing to the small magnitude
of the shifts, the small number of the shifted atoms
and the slight difference between the atomic scattering
factors of Ti and (Fe,Mg), does not verify that the
hypothesis is right or that it is wrong.

As a result of the above considerations we can assign
to neptunite the following chemical formula:

LiNa,K(Fe,Mg,Mn),(TiO),[Siz0,] .
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Some observations can be made on the electrostatic
equilibrium of the crystal structure. If we consider all
the bonds as ionic and divide the charge of each cation
among the anions of its coordination polyhedron, some
notable deficiencies of electrostatic equilibrium are

Table 4. Interatomic distances (A), angles (°) and their standard deviations (in brackets)
The distances preceded by an asterisk occur twice

Atoms

Si(1)O(7)
0(8)
0(9)
o(11)

Si(2)0(2)
0(10)
o(11)
0(12)

Si(3)0(5)
O(6)
0o(8)
O

Si(4)0(1)
0(3)
0O(6)
0(12)

(Fe, Ti)(1)O(2)
O(4)

O(5)
Oo(7)
o(7)
0(10)

(Fe,Ti)(2)O(1)
o)

0(2)
0(3)
0(4)
0(5)

Bond length

1-580 (12)
1-623 (15)
1597 (15)
1-608 (10)

1612 (9)
1-586 (11)
1-671 (9)

1-678 (15)

1653 (12)
1-600 (15)
1-625 (18)
1-672 (12)

1671 (13)
1566 (21)
1-666 (14)
1-618 (12)

2:045 (12)
1-918 (13)
2-096 (16)
2:065 (11)
2:218 (13)
1990 (11)

2:067 (9)

2:067 (15)
2-195 (12)
1-986 (15)
2:010 (13)
2:057 (14)

Atoms
O(7)Si(1)O(8)
o)
o(11)
0O(8)Si(1)0(9)
O(11

)
0(9)Si(1)0(11)
0(2)8i(2)0(10)

o

0(12)
0(10)Si(2)0(11)
0(12

O(11)Si(2)0(12)
0O(5)Si(3)O(6)
O(8)

09
0O(6)Si(3)0(8)
O(9

(9)
O(8)Si(3)0(9)
O(1)Si(4)0(3)

0O(6)

0(12)
0(3)Si(4)0(6)
0(12)

0(6)Si(4)0(12)
O(2)(Fe,Ti)(1) O(4)
0(5)

o(7
o(7")

o(10
O(4)(Fe,Ti)(1) O(5)
o7
o(7)
0(10)
O(5)(Fe,Ti)(1) O(7)
o(7)
0(10)
O(7)(Fe,Ti)(1) O(7")
0(10)
O(7’)(Fe, Ti)(1)O(10)
O(1)(Fe,Ti)(2) O(1")
0o@2)

0(3)
o4

0(5)
O(1")(Fe, Ti)(2)O(2)
0(3)
0(4)
O(5)
O(2)(Fe,Ti)(2) O(3)
0(4)
O(5)
O(3)(Fe,Ti)(2) O(4)
(%)
O4)(Fe,Ti)(2) O(5)

Bond angle

112:4 (8)
12:1 (7)
1161 (6)
104-3 (7)
1082 (6)
102:6 (8)

116:8 (7)
107-3 (5)
110:0 (7)
111-3 (6)
107-1 (6)
103-6 (8)

112-1 (7)
1111 (8)
112:7 (8)

Atoms

NaO(@3)
0(5)
0(6)
0(6")
o(7)
0(10)
o(12)

2:414 (22)
2-482 (18)
2:514 (18)
2:927 (24)
2-553 (17)
2-491 (16)
2:726 (9)

107-7 (1-0)

107-9 (7)
105-0 (6)

117-4 (8)
107-9 (8)
1089 (7)

105-7 (1:1)

110-4 (7)
105-8 (7)

95-8 (5)
80-9 (5)
164-7 (6)
875 (5)
89-0 (5)
937 (6)
962 (5)
174-8 (4)
94-8 (5)
889 (5)
830 (5)
167-4 (6)

*2-837 (9)

*2:815 (10)
*3-214 (13)
*3-104 (19)
*2-853 (11)

79-9 (1-0)

99-4 (5)
89-2 (5)

81-3 (1-0)

862 (5)
91-8 (8)
94-4 (5)
162+4 (7)
80-0 (5)
170-1 (5)
95-6 (6)
877 (6)
92:6 (5)
1754 (6)
783 (5)
919 (6)
972 (8)
100-4 (5)

Lio(1)
0(2)
o

*2-130 (20)
*2:151 (19)
*2:041 (11)

Bond length

Atoms

O(3)NaO(5)
0(6)
0(6")
o7
0(10)
0(12)

O(5)NaO(6)
o(6")

o(7)

0(10)

0(12)
O(6)NaO(6")
o(7)

0(10)

0o(12)
O(6'YNaO(7)

0(10)

o(12)

O(7)NaO(10)

0(12)

0(10)NaO(12)

O@B)K 0O(9)
o(11)
o(11%)
0(12)
o(8")
0(9)
o(117)

(11"

O(YK

o1

oaur

0(12%)
O(11)K O(119)

0(12)

o(117)

o(11)

0(12%)
O(11")K 0(12)

O(l 1///)

0129
O(12)K 0(129)

O(1)LiO(2)
0o(4)

o)
02
o)
O(2)LiO(4)
o)
o)
O4)LiO(4")

Bond angle

766 (5)
97-2 (6)
567 (5)
89-8 (5)
158-4 (7)
141°2 (7)
1581 (6)
113-8 (5)
692 (5)
833 (5)
136:0 (5)
781 (1-2)
90-1 (5)
987 (6)
59-8 (4)
141-9 (5)
141-5 (5)
866 (5)
75:6 (5)
118:5 (5)
60-2 (4)

55-2 (4)
50-8 (3)
104-9 (4)
71-4 (3)
1433 (7)
1191 (4)
98-6 (4)
80-7 (4)
140-5 (3)
94-2 (3)
49-7 (3)
95-5 (3)
164-6 (6)
73:9 (3)
133-4 (3)
955 (3)
133-1 (8)
969 (3)
80-1 (8)
63-2 (7)
1686 (3)
1132 (3)
162:5 (6)
52:2 (3)
880 (7)

179:2 (5)
91-6 (6)
100-2 (2-1)
79:6 (5)
869 (6)
891 (6)
100-6 (2-0)
924 (6)
177-6 (2-6)
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evident: the positive charge for each oxygen atom is
generally slightly higher than 2, but for three oxygen
atoms is much lower: 1-6 for O(3) and O(10), 1-2 for
O(4). This last case is represented by the oxygen not
bonded with silicon and with a possible covalent bond
with titanium. Generally it is rather difficult to verify
the electrostatic equilibrium in a crystal containing
titanium. It is very probable that the whole electro-
static equilibrium is affected by the distortion of the
TiOg octahedron. It is a matter of fact that considering
the bonds as purely ionic, potassium and, in part, also
the other alkaline ions would be in contact with oxygen
atoms which are apparently neutral because they are
shared by two SiO, tetrahedra.

However, conclusive statements will be possible only
after a refinement of the non-centrosymmetrical struc-
ture, by using a greater amount of experimental data.

We wish to thank Prof. F.Sgarlata, who kindly made
available to us his program for three-dimensional re-
finement.
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A Discussion of the Distribution of Bonded Electron Density

By A.M.O’ConnELL¥*, A.I. M. RAE} AND E.N. MASLEN
Department of Physics, University of Western Australia, Nedlands, Western Australia

(Received 14 December 1965)

The final difference syntheses on a number of previously published structures are examined for evidence
of bonding electrons. It is found that the aromatic C-C bond contains a residual peak of maximum
height about 0-2 e.A-3 with half height extensions of about 0-3 A in, and 0-75 A perpendicular to, the
trigonal plane. In some cases direct evidence is also obtained for charge movements in the molecule.
The experimental results are compared with those calculated from Slater wave functions. The agreement
is generally good, but discrepancies remain which can be attributed to the neglect of ¢ orbital con-
traction and electron correlation in the theoretical calculations. It is found that refinement of structures
by use of isolated atom wave functions leads to significant errors in the parameters, not only of terminal
atoms, but also of trigonally bonded atoms with hydrogen substituents.

1. Introduction

The structure analysis of f-sulphanilamide (O’Connell
& Maslen, 1966) has provided detailed information on
the electron density distribution in the C-C, C-N and
C-S bonds in this molecule. The difference synthesis
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shows peaks in the bonds which reach maxima near
the bond centres and which extend a considerable dis-
tance above and below the plane of the molecule. The
existence of such residual features in difference maps
has been known for some time and detailed projection
studies were carried out by Cochran (1953, 1956) and
Mason (1960). However, since the advent of highly
accurate three-dimensional structure analysis, remark-
ably little attention has been paid to features in the
residual electron density maps. In fact, an extensive



